[Padova]: Giardino dei giusti


Anni fa (2013) fotografai questo complesso monumentale per studiarlo. Le foto vennero scattate con la luce del sole. In digitale e con vari obiettivi.


Adesso sono tornato con il grande formato e di notte. Con un medio grandangolo ho colto due punti di vista particolari, per me significativi. Per pellicola ho scelto la Ilford Delta 100 per la sua curva caratteristica e per i suoi bassi tempi di compensazione per la mancata reciprocità dovuta ai tempi lunghi necessari.

I tempi di posa sono di 3′ (2+1 di compensazione) esposto in zona V per le luci principali sul monolito di metallo. Trattato poi in N+1 con lo sviluppo ID11 1+1.

Le foto che vedete sono scansionate direttamente dai negativi senza correzione alcuna.

Purtroppo la stendarda davanti non era posizionata perfettamente in verticale  e così c’è un certo grado di fuori fuoco sulla parte in alto verticale dei monoliti in primo piano. Una scusa per tornarci a breve 🙂


Intrepid 4×5, Fujinon 125 f5.6, Ilford Delta 100, Ilford ID11



[project ] : 陈式太极拳

Those are just 2 photos to explore my idea of Tai chi chuan.

With the collaboration of my instructor, I’m trying to convey in photography the spirit of this martial art. On of the aspect of this internal style is the use of the spiral movements. Silk reeling.

Simply put, its about learning how to move your body in a coordinated and efficient way in-accordance to the principles of Chen Tai Chi Chuan.

The body has to move as one unit, with the torso and limbs twisting, twining, spiralling and rotating. The hips control the legs, the chest controls the arms, and the centre (“dantien” in Chinese) controls the hips and chest. The dantien is quite simply the centre of the body, and consists of the abdominal muscles attaching to the hips and lower spine.

[from: https://medium.com/tai-chi-school/a-beginners-guide-to-silk-reeling-3e4e42ddbadf%5D

The end goal is for all movement to originate from your dantien. However, this is something that will take time to achieve with consistent practice and layered guidance from a teacher who really knows what they are doing!

All the photos that you can view about this martial art (and even for the others!) are static poses. Maybe to gain the interest of the viewer showing those “exotic” poses.

My approach is completely different. Photography, for me, is a tool to communicate and explore aspects of life. And Tai chi chuan is not a series of static forms or positionss. One is always in movement, shifting continously between the ying and the yang forces.

Stay tuned for further works.

Intrepid 4×5″, fp4, Id11, film scan + Lr

[Venice]: Classic postcards, 2018








These are all scans from 4×5″ film (Fomapan, FP4+, Delta 100). These negatives are ready to print on silver gelatin paper, as it has to be, in my darkroom.

I love wandering in this city following only my karma. Something always happens. I’m not a picture hunter, not anymore, really. Thanks to the large format camera, time is flowing in a natural way and I am able to synchronize with it in a natural way. I capture the spirit of the moment and then wait for an uncountable time to watch at the photos. And finally I love to print them when emotions are passed away. I have to make some distance in time from the moment I took the photos until I’m able to print them.


[Darkroom]: film washing

As you know the final phase of developing process is the washing of the film. The best method I’ve find is the Ilford one. It has the objective to save water and minimize the residual of thiosulfate in the film to obtain an archival negative or at better a “stable” one. It states that the sequence of washing is composed by three steps:

Fill tank and give 5 inversions, sit some length of time, dump
Fill tank and give 10 inversions, sit some length of time, dump
Fill tank and give 20 inversions, sit some length of time, dump

How much is “some lenght of time”? One minute, 5 minutes as say Anchell & Troop?

I’ve found, I think, a resolutive response from a thread of 2004 (http://www.largeformatphotography.info/unicolor/com_rolf.html#tthFrefAAC)

Comments on the paper “Some investigations on the kinematics of the Ilford film washing procedure” by Rolf Suessbrich, part of largeformatphotography.info

Marc Torzynski1
Laboratoire des systèmes photoniques
École nationale supérieure de physique
Université Louis-Pasteur
Parc d’innovation, BP 10413, F-67412 Illkirch Cedex, France

October 2004

There is certainly nothing wrong with the paper “Some investigations on the kinematics of the Ilford film washing procedure” by Rolf Suessbrich2. The description of the emulsion washing as a diffusion process is perfectly correct and experimental measurements are very convincing. When it comes to quantitative calculation, however, a complete estimation based on actual values should be done.

A 135/36 wet film holds about 4 ml of fixer solution, 2 ml of which being absorbed inside the emulsion, the remaining located at the surface of the film3. Drained, a 500 ml tank keeps about 6 ml of droplets along the walls and the cap4. Thus, there is a total of about 10 ml of remaining fixer, which corresponds roughly to 600 mg of thiosulfate5.

If after pouring out the fixer we simply refill the tank with 500 ml of water and wait for the absorbed fixer to diffuse out of the emulsion, we should end up with a residual thiosulfate level of 1.2 g/l (600 mg:500 ml), which is just slightly below the recommended archival limit of 1.5 g/l. Expressed in Suessbrich’s units, the residual hypo level in water as well as in film will be “dil. 50” (10 ml:500 ml).

If the film is first thoroughly rinsed, the walls and the surface of the film will be clean and only the 2 ml of absorbed fixer will diffuse into the 500 ml filling water, lowering the residual hypo level to 0.24 g/l or “dil. 250”6.

In any case, Suessbrich’s conclusion remains true: a single wash is theoretically sufficient. However, as he pointed it out, the time required to complete the diffusion process may be excessive because that process slows down as the hypo concentration difference inside the emulsion and the surrounding water decreases, thus preventing the reach of the equilibrium point.

Let us however carefully investigate the washing process and its dynamic from Suessbrich’s data. From his Fig. 2, where a good wiping reduces the take over, it appears that after the first wash, a second and a third washes have almost no effect (as have no effect the additional washes of an already well washed film – see Figs. 5 & 6). Additionally, it can be seen from the shape of the curve that the first wash could be reduced up to 60″!

One could object that having relatively clean water does not mean that the emulsion is of the same cleanness. This is what Suessbrich points out by claiming that the binding mechanism of the hypo into the emulsion may prevent the reaching of the above computed equilibrium points using a single wash. Indeed, breaking that bindings may require a strong hypo concentration difference between the emulsion and the surrounding water, which is achieved by regularly replacing the used water by fresh one. But should such a breaking occur in these successive baths, it would be monitored by a significantly increase of hypo concentration in water, which is, according to Fig. 2, not the case: the lower curves show that only a minute quantity of thiosulfate migrates out of the emulsion in the 2nd and the 3rd bath.

I would conclude, in a rather iconoclastic way, that a good rinse and a single 1 minute wash in 500 ml of water with continuous agitation will leave the films perfectly clean.

Of course I won’t really advocate for archiving the films after such a procedure, because there would be absolutely no safety factor left: a 2- or 3-wash procedure is certainly a safer figure. But this analysis embeds what Suessbrich suggests: the washing requirements are usually largely overestimated. In my lab, photographic films that were given no more than a one minute rinse have been stored for more than ten years without any degradation; the same is true for holographic plates, whose silver grains are 1/100 000th smaller than those of common B&W films and therefore much more prone to be “eaten” by residual fixer7.

In my opinion the photographers community has developed over the years a false but very obsessive position according to which a proper washing cannot be achieved without leaving the film plenty of time under a waterfall. And even the reasonable common suggestion of washing the films for about a quarter of an hour under a running flow which allows a complete change of water in the tank every five minutes8 is a waste of water compared to Ilford’s method, because this 5′ change rate requires a water flow of at least 1.5 l/min for a 500 ml tank9. It was a therefore a pleasure to read Suessbrich’s paper, which I hope will help to break all these generally accepted but preconceived ideas about washing.




3This was measured by weighting the film dry, wet, and wet but wiped. It may sound astonishing that a dry emulsion volume of 0.6 ml absorbs 2 ml of liquid, but we should keep in mind that wet gelatin expands up to 10 times its dry thickness.

4This again is a measured figure.

560 g/l hypo is a common figure for film fixer at working strength.

6Actually less, because some hypo will diffuse out of the emulsion during the rinse.

7… and I remember having seen a well-washed film turning yellow in two weeks because it was forgotten near a big PVC roll whose chloride or solvent emanations quickly oxidize the silver : I am pretty convinced that most of the encountered film degradations comes from bad storage.

8Kodak washing procedure.

9We measured this by monitoring over time the decrease in concentration of a conductivity tracer introduced in the tank at the beginning of the wash.

File translated from TEX by TTH, version 3.63.
On 15 Feb 2005, 08:39.